IELTS READING – Stonehenge S58AT1

 IELTS Reading Stonehenge reading practice test has 10 questions belongs to History and Archaeology subject..

đź“–Attempt Free Reading Test..

Stonehenge

For centuries, historians and archaeologists have puzzled over the many mysteries of Stonehenge, a prehistoric monument that took an estimated 1,500 years to erect. Located on Salisbury Plain in southern England, it is comprised of roughly 100 massive upright stones placed in a circular layout.

Archaeologists believe England’s most iconic prehistoric ruin was built in several stages, ruin was with the earliest constructed 5,000 or more years ago. First, Neolithic Britons used primitive tools, which may have been fashioned out of deer antlers, to dig a massive circular ditch and bank, or henge. Deep pits dating back to that era and located within the circle may have once held a ring of timber posts, according to some scholars.

Several hundred years later, it is thought, Stonehenge’s builders hoisted an estimated 80 bluestones, 43 of which remain today, into standing positions and placed them in either a horseshoe or circular formation. These stones have been traced all the way to the Preseli Hills in Wales, some 300 kilometres from Stonehenge. How, then, did prehistoric builders without sophisticated tools or engineering haul these boulders, which weigh up to four tons, over such a great distance?

According to one long-standing theory among archaeologists, Stonehenge’s builders fashioned sledges and rollers out of tree trunks to lug the bluestones from the Preseli Hills. They then transferred the boulders onto rafts and floated them first along the Welsh coast and then up the River Avon toward Salisbury Plain; alternatively, they may have towed each stone with a fleet of vessels. More recent archaeological hypotheses have them transporting the bluestones with supersized wicker baskets on a combination of ball bearings and long grooved planks, hauled by oxen.

As early as the 1970s, geologists have been adding their voices to the debate over how Stonehenge came into being. Challenging the classic image of industrious builders pushing, carting, rolling or hauling giant stones from faraway Wales, some scientists have suggested that it was glaciers, not humans, that carried the bluestones to Salisbury Plain. Most archaeologists have remained sceptical about this theory, however, wondering how the forces of nature could possibly have delivered the exact number of stones needed to complete the circle.

The third phase of construction took place around 2000 BCE. At this point, sandstone slabs – known as ‘sarsens’ – were arranged into an outer crescent or ring; some were assembled into the iconic three-pieced structures called trilithons that stand tall in the centre of Stonehenge. Some 50 of these stones are now visible on the site, which may once have contained many more. Radiocarbon dating has revealed that work continued at Stonehenge until roughly 1600 BCE, with the bluestones in particular being repositioned multiple times.

But who were the builders of Stonehenge? In the 17th century, archaeologist John Aubrey made the claim that Stonehenge was the work of druids, who had important religious, judicial and political roles in Celtic society. This theory was widely popularized by the antiquarian William Stukeley, who had unearthed primitive graves at the site. Even today, people who identify as modern druids continue to gather at Stonehenge for the summer solstice. However, in the mid-20th century, radiocarbon dating demonstrated that Stonehenge stood more than 1,000 years before the Celts inhabited the region.

Many modern historians and archaeologists now agree that several distinct tribes of people contributed to Stonehenge, each undertaking a different phase of its construction. Bones, tools and other artefacts found on the site seem to support this hypothesis. The first stage was achieved by Neolithic agrarians who were likely to have been indigenous to the British Isles. Later, it is believed, groups with advanced tools and a more communal way of life left their mark on the site. Some believe that they were immigrants from the European continent, while others maintain that they were probably native Britons, descended from the original builders.

If the facts surrounding the architects and construction of Stonehenge remain shadowy at best, the purpose of the striking monument is even more of a mystery. While there is consensus among the majority of modern scholars that Stonehenge once served the function of burial ground, they have yet to determine what other purposes it had.

In the 1960s, the astronomer Gerald Hawkins suggested that the cluster of megalithic stones operated as a form of calendar, with different points corresponding to astrological phenomena such as solstices, equinoxes and eclipses occurring at different times of the year. While his theory has received a considerable amount of attention over the decades, critics maintain that Stonehenge’s builders probably lacked the knowledge necessary to predict such events or that England’s dense cloud cover would have obscured their view of the skies.

More recently, signs of illness and injury in the human remains unearthed at Stonehenge led a group of British archaeologists to speculate that it was considered a place of healing, perhaps because bluestones were thought to have curative powers.


Best Results Easily Get Required Score.

Best IELTS Coaching Dehradun.

phone icon
8439000086
8439000087
7055710004
IELTS Simulation 323 GMS Road, Near Ballupur Chowk, Dehradun, India

Chat on WhatsApp
email: info at ieltsband7.com

IELTS READING –  Conquering Earth’s space junk problem S57AT3

 IELTS Reading Conquering Earth’s space junk problem reading practice test has 10 questions belongs to Science and Technology subject..

đź“–Attempt Free Reading Test..

 

Satellites, rocket shards and collision debris are creating major traffic risks in orbit  around the planet. Researchers are working to reduce these threats

A 

Last year, commercial companies, military and civil departments and amateurs sent more than 400 satellites into orbit, over four times the yearly average in the previous decade. Numbers could rise even more sharply if leading space companies follow through on plans to deploy hundreds to thousands of large constellations of satellites to space in the next few years.

All that traffic can lead to disaster. Ten years ago, a US commercial Iridium satellite smashed into an inactive Russian communications satellite called Cosmos-2251, creating thousands of new pieces of space shrapnel that now threaten other satellites in low Earth orbit the zone stretching up to 2,000 kilometres in altitude. Altogether, there are roughly 20,000 human-made objects in orbit, from working satellites to small rocket pieces. And satellite operators can’t steer away from every potential crash, because each move consumes time and fuel that could otherwise be used for the spacecraft’s main job

B 

Concern about space junk goes back to the beginning of the satellite era, but the number of objects in orbit is rising so rapidly that researchers are investigating new ways of attacking the problem. Several teams are trying to improve methods for assessing what is in orbit, so that satellite operators can work more efficiently in ever-more-crowded space. Some researchers are now starting to compile a massive dala set that includes the best possible information on where everything is in orbit. Others are developing taxonomies of space debris-working on measuring properties such as the shape and size of an object, so that satellite operators know how much to worry about what’s coming their way.

The altemative, many say, is unthinkable, Just a few uncontrolled space crashes could generate enough debris to set off a runaway cascade of fragments, rendering near-Earth space unusable. ‘If we go on like this, we will reach a point of no return,” says Carolin Frueh, an astrodynamical researcher at Purdue University in West Lafayette, indiana.

C

Even as our ability to monitor space objects increases, so too does the total number of items in orbit. That means companies, governments and other players in space are collaborating in new ways to avoid a shared threat. International groups such as the Inter-Agency Space Debris Coordination Committee have developed guidelines on space sustainability. Those include inactivating satellites at the end of their useful life by venting pressurised materials or leftover fuel that might lead to explosions. The intergovernmental groups also advise lowering satellites deep enough into the atmosphere that they will burn up or disintegrate within 25 years. But so far, only about half of all missions have abided by this 25-year goal, says Holger Krag, head of the European Space Agency’s space-debris office in Darmstadt, Germany. Operators of the planned large constellations of satellites say they will be responsible stewards in their enterprises in space, but Krag worries that problems could increase, despite their best intentions. ‘What happens to those that fail or go bankrupt?’ he asks. They are probably not going to spend money to remove their satellites from space.

D

In theory, given the vastness of space, satellite operators should have plenty of room for all these missions to fly safely without ever nearing another object. So some scientists are tackling the problem of space junk by trying to find out where all the debris is to a high degree of precision. That would alleviate the need for many of the unnecessary manoeuvres that are carried out to avoid potential collisions. ‘If you knew precisely where everything was, you would almost never have a problem,” says Marion Sorge, a space-debris specialist at the Aerospace Corporation in El Segundo, California.

E

The field is called space traffic management, because it’s similar to managing traffic on the roads or in the air. Think about a busy day at an airport, says Moriba Jah, an astrodynamicist at the University of Texas at Austin: planes line up in the sky, landing and taking off close to one another in a carefully choreographed routine. Air-traffic controllers know the location of the planes down to one metre in accuracy. The same can’t be said for space debris. Not all objects in orbit are known, and even those included in databases are not tracked consistently.

F

An additional problem is that there is no authoritative catalogue that accurately lists the orbits of all known space debris. Jah illustrates this with a web-based database that he has developed. It draws on several sources, such as catalogues maintained by the US and Russian governments, to visualise where objects are in space. When he types in an identifier for a particular space object, the database draws a purple line to designate its orbit. Only this doesn’t quite work for a number of objects, such as a Russian rocket body designated in the database as object number 32280. When Jah enters that number, the database draws two purple lines: the US and Russian sources contain two completely different orbits for the same object Jah says that it is almost impossible to tell which is correct, unless a third Source of information made it possible to cross-correlate.

Jah describes himself as a space environmentalist: ‘I want to make space a place that is safe to operate, that is free and useful for generations to come.’ Until that happens, he argues, the space community will continue devolving into a tragedy in which all spaceflight operators are polluting a common resource.


Learn From Experienced Teacher

Best IELTS Coaching Dehradun 

phone icon
8439000086
8439000087
7055710004
IELTS Simulation 323 GMS Road, Near Ballupur Chowk, Dehradun, India

Chat on WhatsApp
email: info at ieltsband7.com

IELTS READING – Forest management in Pennsylvania, USA S57AT2

 IELTS Reading Forest management in Pennsylvania, USA reading practice test has 10 questions belongs to Environment and Agriculture subject..

đź“–Attempt Free Reading Test..

 How managing low-quality wood (also known as low-use wood) for bioenergy can encourage sustainable forest management

A

A tree’s ‘value’ depends on several factors including its species, size, form, condition, quality, function, and accessibility, and depends on the management goals for a given forest. The same tree can be valued very differently by each person who looks at it. A large, straight black cherry tree has high value as timber to be cut into logs or made into furniture, but for a landowner more interested in wildlife habitat, the real value of that stem (or trunk) may be the food it provides to animals. Likewise, if the tree suffers from black knot disease, its value for timber decreases, but to a woodworker interested in making bowls, it brings an opportunity for a unique and beautiful piece of art.

B

In the past, Pennsylvania landowners were solely interested in the value of their trees as high-quality timber. The norm was to remove the stems of highest quality and leave behind poorly formed trees that were not as well suited to the site where they grew. This practice, called ‘high-grading’, has left a legacy of low-use wood’ in the forests. Some people even call these ‘junk trees’, and they are abundant in Pennsylvania. These trees have lower economic value for traditional timber markets, compete for growth with higher-value trees, shade out desirable regeneration and decrease the health of a stand leaving it more vulnerable to poor weather and disease. Management that specifically targets low-use wood can help landowners manage these forest health issues, and wood energy markets help promote this.

C 

Wood energy markets can accept less expensive wood material of lower quality than would be suitable for traditional timber markets. Most wood used for energy in Pennsylvania is used to produce heat or electricity through combustion. Many schools and hospitals use wood boiler systems to heat and power their facilities, many homes are primarily heated with wood, and some coal plants incorporate wood into their coal streams to produce electricity. Wood can also be gasified for electrical generation and can even be made into liquid fuels like ethanol and gasoline for lorries and cars. All these products are made primarily from low-use wood. Several tree- and plant-cutting approaches, which could greatly improve the long-term quality of a forest, focus strongly or solely on the use of wood for those markets.

D

One such approach is called a Timber Stand Improvement (TSI) Cut. In a TSI Cut, really poor-quality tree and plant material is cut down to allow more space, light, and other resources to the highest-valued stems that remain. Removing invasive plants might be another primary goal of a TSI Cut. The stems that are left behind might then grow in size and develop more foliage and larger crowns or tops that produce more coverage for wildlife; they have a better chance to regenerate in a less crowded environment. TSI Cuts can be tailored to one farmer’s specific management goals for his or her land.

E

Another approach that might yield a high amount of low-use wood is a Salvage Cut. With the many pests and pathogens visiting forests including hemlock wooly adelgid, Asian longhorned beetle, emerald ash borer, and gypsy moth, to name just a few, it is important to remember that those working in the forests can help ease these issues through cutting procedures. These types of cut reduce the number of sick trees and seek to manage the future spread of a pest problem. They leave vigorous trees that have stayed healthy enough to survive the outbreak.

F

A Shelterwood Cut, which only takes place in a mature forest that has already been thinned several times, involves removing all the mature trees when other seedlings have become established. This then allows the forester to decide which tree species are regenerated. It leaves a young forest where all trees are at a similar point in their growth. It can also be used to develop a two-tier forest so that there are two harvests and the money that comes in is spread out over a decade or more.

G

Thinnings and dense and dead wood removal for fire prevention also center on the production of low-use wood. However, it is important to remember that some retention of what many would classify as low-use wood is very important. The tops of trees that have been cut down should be left on the site so that their nutrients cycle back into the soil. In addition, trees with many cavities are extremely important habitats for insect predators like woodpeckers, bats and small mammals. They help control problem insects and increase the health and resilience of the forest. It is also important to remember that not all small trees are low-use. For example, many species like hawthorn provide food for wildlife. Finally, are species of trees in a in a forest should also stay behind as they add to its structural diversity. 

 


Learn From Experienced Teacher

Best IELTS Coaching Dehradun 

phone icon
8439000086
8439000087
7055710004
IELTS Simulation 323 GMS Road, Near Ballupur Chowk, Dehradun, India

Chat on WhatsApp
email: info at ieltsband7.com

IELTS READING – Andrea Palladio: Italian architect S53AT1

IELTS Reading Andrea Palladio: Italian architect reading practice test has 10 questions belongs to Architecture & Biography subject..

A new exhibition celebrates Palladio’s architecture 500years on

A. Vicenza is a pleasant, prosperous city in the Veneto, 60km west of Venice. Its grand families settled and farmed the area from the 16th century. But its principal claim to fame is Andrea Palladio, who is such an influential architect that a neoclassical style is known as Palladian. The city is a permanent exhibition of some of his finest buildings, and as he was born— in Padua, to be precise—500 years ago, the International Centre for the Study of Palladio’s Architecture has an excellent excuse for mounting la grand emostra, the big show.

 

B. Q2 The exhibition has the special advantage of being held in one of Palladio’s buildings, Palazzo Barbaran da Porto. Its bold facadeis a mixture of rustication and decoration set between two rows of elegant columns. On the second floor the pediments are alternately curved or pointed, a Palladian trademark. The harmonious proportions of the atrium at the entrance lead through to a dramatic interior of fine fireplaces and painted ceilings. Palladio’s design is simple, clear and not over-crowded. The show has been organised on the same principles, according to Howard Burns, the architectural historian who co-curated it.

C. Q3 Palladio’s father was a miller who settled in Vicenza, where the young Andrea was apprenticed to a skilled Q8 stonemason. How did a humble miller’s son become a world renowned architect? The answer in the exhibition is that, as a young man, Palladio excelled at carving decorative stonework on columns, doorways and fireplaces. He was plainly intelligent, and lucky enough to come across a rich patron, Q9 Gian Giorgio Trissino, a landowner and scholar, who organised his education, taking him to Rome in the 1540s, where he studied the masterpieces of classical Roman and Greek architecture and the work of other influential architects of the time, such as Donato Bramante and Raphael.

D. Burns argues that social mobility was also important. Entrepreneurs, prosperous from agriculture in Q6 the Veneto, commissioned the promising local architect to design their country villas and their urban mansions. In Venice the aristocracy were anxious to co-opt talented artists, and Q7 Palladio was given the chance to design the buildings that have made him famous— the churches of San Giorgio Maggiore and the Redentore, both easy to admire because they can be seen from the city’s historical centre across a stretch of water.

E. He tried his hand at bridges—his unbuilt version of the Rialto Bridge was decorated with the large pediment and columns of a Q11 temple —and, after a fire at the Ducal Palace, he offered an alternative design which bears an uncanny resemblance to the Banqueting House in Whitehall in London. Since it was designed by Q10 Inigo Jones, Palladio’s first foreign disciple, this is not as surprising as it sounds.

F. Jones, who visited Italy in 1614, bought a trunk full of the master’s architectural drawings; they passed through the hands of the Dukes of Burlington and Devonshire before settling at the Royal Institute of British Architects in 1894. Many are now on display at Palazzo Barbaran. What they show is how Palladio drew on the buildings of ancient Rome as models. The major theme of both his rural and urban building was temple architecture, with a strong pointed pediment supported by columns and approached by wide steps.

G. Q5 Palladio’s work for rich landowners alienates unreconstructed critics on the Italian left, but among the papers in the show are designs for cheap housing in Venice. In the wider world, Palladio’s reputation has been nurtured by a text he wrote and illustrated, “Q12 Quattro Libri dell’ Architettura“. His influence spread to St Petersburg and to Charlottesville in Virginia, where Thomas Jefferson commissioned a Palladian villa he called Monticello.

H. Vicenza’s show contains detailed models of the major buildings and is leavened by portraits of Palladio’s teachers and clients by Titian, Veronese and Tintoretto; the paintings of his Venetian buildings are all by Canaletto, no less. This is an uncompromising exhibition; many of the drawings are small and faint, and there are no sideshows for children, but the impact of harmonious lines and satisfying proportions is to impart in a viewer a feeling of Q13 benevolent calm. Palladio is history’s most therapeutic architect.

I. “Palladio, 500 Anni: La Grande Mostra” is at Palazzo Barbaran da Porto, Vicenza, until January 6th 2009. The exhibition continues at the Royal Academy of Arts, London, from January 31st to April 13th, and travels afterwards to Barcelona and Madrid.


Best Results Easily Get Required Score IELTS Exam Dates Available, Small Batch Size with Flexible Time, Professional.

phone icon
8439000086
8439000087
7055710003
7055710004
IELTS Simulation 323 GMS Road, Near Ballupur Chowk, Dehradun, India
Chat on WhatsApp
email: info at ieltsband7.com